Effect of Fiber Hybridization on Durability Related Properties of Ultra-High Performance Concrete

نویسندگان

  • Piotr Smarzewski
  • Danuta Barnat-Hunek
چکیده

The purpose of the paper is to determine the influence of two widely used steel fibers and polypropylene fibers on the sulphate crystallization resistance, freeze–thaw resistance and surface wettability of ultra-high performance concrete (UHPC). Tests were carried out on cubes and cylinders of plain UHPC and fiber reinforced UHPC with varying contents ranging from 0.25 to 1% steel fibers and/or polypropylene fibers. Extensive data from the salt resistance test, frost resistance test, dynamic modulus of elasticity test before and after freezing-thawing, as well as the contact angle test were recorded and analyzed. Fiber hybridization relatively increased the resistance to salt crystallization and freeze–thaw resistance of UHPC in comparison with a single type of fiber in UHPC at the same fiber volume fraction. The experimental results indicate that hybrid fibers can significantly improve the adhesion properties and reduce the wettability of the UHPC surface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Reinforcement Type on the Tension Stiffening Model of Ultra-High Performance Concrete (UHPC)

Ultra-high performance concrete (UHPC) is a developing concrete and today is increasing to interest using it in structures due to its advantages such as high-compressive strength, modulus of elasticity, highly durability and low-permeability. Therefore, it is necessary to provide models for prediction of nonlinear behavior of this material. This study is aimed to investigate the tension-stiffen...

متن کامل

Experimental Study on TGA, XRD and SEM Analysis of Concrete with Ultra-fine Slag (TECHNICAL NOTE)

The performances of cementitious materials as well as the efficiency of construction are adversely affected at high temperatures. Previous studies have already demonstrated that ultra-fine (alccofine) material accelerates the hydration of cement particles and subsequently improves the mechanical and durability properties of the concrete at normal temperature. Moreover, at higher temperatures th...

متن کامل

Durability Performance of Self Compacting Concrete Incorporating Alccofine and Fly Ash

The cost associated with the application of large volume of cement and synthetic admixtures was one of the major drawbacks of Self Compacting Concrete (SCC), which can be reduced by the use of supplementary cementitious materials (SCM). When the demand of cement reduces, the release of carbon dioxide (CO2) from cement industries will come down, which has a positive impact on global w...

متن کامل

Evaluation of Hybrid Fiber Reinforced Concrete Exposed to Severe Environmental Conditions

Hybrid fiber reinforced concrete (HFRC) consisting of two or more different types of fibers has been widely investigated because of its superior mechanical properties. In the present study, the effect of the addition of steel (0.25%, 0.5%, 0.75%, and 1% of concrete volume) and Polypropylene (0.2%, 0.4%, and 0.6% of concrete volume) fibers on the surface scaling resistance of concrete, depth of ...

متن کامل

Estimation of mechanical and durability properties of self-compacting concrete with fibers using ultrasonic pulse velocity

In this research, the performance of ultrasonic pulse velocity (UPV) in concrete is examined as a nondestructive experiment in order to estimate mechanical (compressive and tensile strength) and durability (water absorption) properties of fiber-reinforced self-compacted concrete For this purpose 11 mixture designs containing 3 types of fibers (steel: 0.1, 0.2, 0.3 and 0.4 percent by volume, Pol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017